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Abstract. Phase fluctuations of a d-wave superconducting order parameter are theoretically studied in the
context of high-Tc cuprates. We consider an extended t−J model describing electrons in a layer which also
contains long-range Coulomb interactions. The constraint of having at most singly occupied sites is enforced
by an additional Hubbard term. The Heisenberg interaction is decoupled by a d-wave order parameter in
the particle-particle channel. Assuming first that the equilibrium state has long-range phase order, the
effective action Seff is derived perturbatively for small fluctuations within a path integral formalism, in the
presence of the Coulomb and Hubbard interaction terms. In a second step, a more general derivation of Seff

is performed in terms of a gradient expansion which only assumes that the gradients of the order parameter
are small whereas the value of the phase may be large. We show that in the phase-only approximation the
resulting Seff reduces in leading order in the field gradients to the perturbative one which thus allows to
treat also the case without long-range phase order or vortices. Our result generalizes previous expressions
for Seff to the case of interacting electrons, is explicitly gauge invariant, and avoids problematic singular
gauge transformations.

PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) – 74.72.-h
Cuprate superconductors (high-Tc and insulating parent compounds) – 74.25.Jb Electronic structure –
74.25.Dw Superconductivity phase diagrams

1 Introduction

The nature of the pseudogap in underdoped high-Tc oxides
and its relation to superconductivity remains one of the
unsolved problems in high-Tc superconductivity. One sce-
nario assumes that the physics in the underdoped and op-
timally doped region is mainly determined by the competi-
tion of the superconducting order parameter with a second
one in the particle-hole channel. Possible candidates are
antiferromagnetism, charge- and spin-density waves [1,2],
in particular with an internal d-wave symmetry [3,4], and
stripes [5]. One experimental constraint is that this second
order parameter is strongly anisotropic, being large along
the kx and ky axis of the Brillouin zone, and practically
zero near the diagonal kx = ky. This requirement is most
naturally fulfilled if this order parameter has d-wave sym-
metry like the superconducting order parameter. A second
scenario assumes that no instabilities or strong fluctua-
tions in the particle-hole channel are relevant in the un-
derdoped regime but that phase (and perhaps amplitude)
fluctuations of the superconducting order parameter are
important in this region [6].

Presently, it is unclear which of the above two sce-
narios is more realistic in describing high-Tc cuprates. In
this paper we want to explore some aspects of the sec-
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ond approach in more detail. While it seems that the
first scenario has become more popular than the second
one we think that there are enough reasons to study
phase fluctions of the superconducting order parameter.
For instance, order parameters due to structural phase
transitions with finite momentum transfers may easily be
anisotropic because of strongly varying nesting proper-
ties along the Fermi surface. However, whether one can
achieve along this route the observed large anisotropy or
even d-wave symmetry of the pseudogap in a generic way
remains unclear. Experimental SIN tunneling data in the
cuprates also show a rather symmetric one-particle density
of states, both in the superconducting and the pseudogap
region, with respect to the chemical potential [7,8]. Such
a behavior is characteristic for superconductivity but not
generic for densities with structural order parameters in
the particle-hole channel, especially, if they are associated
with large momentum transfers. These problems vanish if
one assumes that only one complex order parameter re-
lated to the observed d-wave superconductivity is relevant.

Fluctuations effects in superconductors are often de-
scribed by the time-dependent Ginzburg-Landau equa-
tions [9]. They describe a relaxational behavior of the
order parameter back to equilibrium, i.e., their time-
dependent part is of first order in the time derivative and
independent of momentum. In the pure system they are
most successfull near Tc and at low frequencies compared
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to the temperature. In the following we want to consider
a different regime, namely, temperatures substantially be-
low the mean-field transition to superconductivity where
the mean-field order parameter is large but varies slowly
in space and time because of a small phase stiffness con-
stant Λ [10]. The t-J model and its constraint to have
no doubly occupied sites leads necessarily to small val-
ues for Λ’s at small dopings [11]. At low temperature Λ
is determined by the diamagnetic term which is given by
the Fourier transform of the one-particle momentum dis-
tribution function at non-vanishing lattice vectors. The
constraint of having no doubly occupied sites implies that
the maximum occupation of a momentum state is 1 + δ
instead of 2 as in the free case [12]. This together with the
sum rule shows that the diamagnetic term must vanish
linearly in δ in the limit δ → 0. As a result large phase
fluctuations should occur at small dopings. In agreement
with this picture we derive in the present work an effective
action for phase fluctuations not as a power but as a gra-
dient expansion in the phase. The method we follow also
allows to take into account interaction terms between the
electrons such as the Hubbard or the long-range Coulomb
interaction. This feature is important because the small
phase stiffness at low dopings is caused by correlation ef-
fects. At the same time our treatment leads to an explic-
itly gauge invariant form for the effective action for phase
fluctuations.

Most of the previous derivations of the effective ac-
tion for phase fluctuations employed singular gauge trans-
formations [13–18]. Such a transformation means in the
static case for the Bogoliubov equations that ∆(r) →
∆(r)·e−iθ(r), u(r) → u(r)·e−iθ(r)/2, v(r) → v(r)·eiθ(r)/2,
A(r) → A(r) − (�c/2ie)∇θ(r) [19]. ∆, u, v are the pair,
electron and hole wave functions, respectively, A the vec-
tor potential, and θ is an arbitrary real function. This
transformation allows to remove completely the fluctua-
tions in ∆ and to describe them as fluctuations in A. How-
ever, ∆, u and v have to be unique functions of r, i.e., their
phase can only change by multiples of 2π after passing
through a closed loop. For instance, in the case of one vor-
tex the angular dependence of the transformed wave func-
tion becomes a linear combination of functions eiµθ, where
2µ is an odd and not, as in the free case, an even integer.
The change of boundary conditions associated with singu-
lar gauge transformations affects thus wave and Green’s
functions even far away from the center of the vortex in a
complicated manner. On the other hand the importance
of these effects for physical quantities [20] is presently not
clear, most authors neglect this problem whereas, accord-
ing to references [21–23], it causes very interesting effects
such as non-Fermi liquid behavior, power laws of corre-
lation functions, etc., in the normal state. In order not
to violate the basic requirement of uniqueness of wave
functions we avoid completely problematic singular gauge
transformations and derive the effective action for phase
fluctuations by means of a gradient expansion in the order
parameter.

The paper is organized as follows. In Section 2 the
Hamiltonian is specified and phase fluctuations of the or-

der parameter are introduced. In Section 3 the effective
action for phase fluctuations is derived under the assump-
tion that the phases θ deviate only little from a homoge-
nous state, for instance, θ = 0. The microscopic quan-
tities appearing in the action are one- and two-particle
Green’s functions associated with the Hamiltonian with-
out external potentials or phase fluctuations. A more gen-
eral derivation for the effective action is given in Section 4
using a gradient expansion which only assumes that the
gradients of the order parameter are small whereas θ may
be large. It is shown that the two effective actions derived
in Sections 3 and 4 are equivalent in the phase-only ap-
proximation for the order parameter. Section 5 contains a
discussion of the results and the conclusions. In Section 3
relations between different correlation functions describ-
ing density, current and pair fluctuations have been in-
ferred from non-singular gauge transformations and used
in obtaining the final form for the effective action. As an
example we verify in the appendix explicitly one of these
relations in the non-interacting case without referring to
gauge invariance arguments.

2 Hamiltonian and phase fluctuations
of the order parameter

We consider a generalized t-J model [24,25], which also
contains repulsive Coulomb and Hubbard interactions, on
a Bravais lattice consisting of layers of squares along the
x and y axis. Its Hamiltonian is given by

H = −
∑

i,j,σ

tijc
†
iσcjσ + J

∑

〈i,j〉

{
Si · Sj − 1

4
ninj

}

+Hint, (1)

Hint =
1
2

∑

i,j

Vijninj +
U

2

∑

i

nini. (2)

σ is the SU(2) spin color, c†iσ (ciσ) the creation (annihi-
lation) operator of a spin σ electron on the site i, J the
Heisenberg interaction, Vij the Coulomb interaction be-
tween the sites i and j, and U a repulsive Hubbard term.
tij is the electronic hopping term between the sites i and
j, 〈 〉 denotes a pair index for nearest neighbor sites on the
same layer. Si and ni are the spin and occupancy number
operators of site i, respectively. In order to simplify the
notation later we will put a = � = c = 1, where a is the
lattice constant of the square lattice and c the velocity of
light. We also assume that the lattice contains Ns sites.
Let us introduce the singlet pair operators

B†
ij = c†i↑c

†
j↓ − c†i↓c

†
j↑, Bij = cj↓ci↑ − cj↑ci↓, (3)

which respectively create and annihilate a singlet on the
bond 〈i, j〉. H can then be expressed equivalently as [14]

H = −
∑

i,j,σ

tijc
†
iσcjσ − J

2

∑

〈i,j〉
B†

ijBij + Hint. (4)
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To derive the partition function, we work in a path inte-
gral formalism [26–29]. The Heisenberg interaction term
is decoupled using the Hubbard-Stratonovitch transforma-
tion [30,31], the resulting complex fields ∆∗, ∆ correspond
to the superconducting order parameter [32]. The parti-
tion function of the t−J model (4) in the imaginary time
formalism is given by

Z =
∫

DΨ̄DΨD∆D∆∗ exp
( − S)

, (5)

with the action

S =
∫ β

0

dτ

[
∑

i,σ

Ψ̄iσ(τ)
{
∂τ − µ

}
Ψiσ(τ)

−
∑

i,j,σ

tij Ψ̄iσ(τ)Ψjσ(τ)

−
∑

〈i,j〉

{
1
4
[
∆ij(τ)B̄∗

ij(τ) + ∆∗
ij(τ)B̄ij(τ)

]

− 1
8J

| ∆ij(τ) |2
}]

+ Sint. (6)

Sint is the contribution to the action due to Hint, β is the
thermal factor, β = 1/kBT , µ is the chemical potential
controlling the electron density while Ψ̄ , Ψ and B̄∗, B̄ are
Grassmann variables corresponding to the electronic op-
erators c†, c and singlet pair operators B†, B, respectively.

The complex bond variables ∆i,i+x̂ and ∆i,i+ŷ may be
written without loss of generality as

∆ij(τ) =| ∆ij(τ) | γijeiφij(τ),

γij =
{

+1 for j = i + x̂
−1 for j = i + ŷ

, (7)

where x̂ and ŷ are basis vectors of the direct lattice. The
equilibrium d-wave order parameter value is given by

| ∆ij(τ) |≡ ∆0, φij(τ) ≡ 0, (8)

where ∆0 is a real number independent of i and τ . In the
present work, fluctuations of the amplitude are neglected.
This implies that only vortices with zero core extension
can be discussed after this approximation. Taking appro-
priate linear combinations of the remaining two phase de-
grees of freedom per elementary cell yields two different
kinds of phase excitations. The first one is in the long-
wavelength limit gapless and preserves the local d-wave
symmetry whereas the second one is gapped and locally
of s-wave symmetry describing phase fluctuations mainly
inside the elementary cell. Only the first kind of phase fluc-
tuations is relevant for the long-wavelength, low-frequency
limit of the action. It can be described by a real field θi

which is defined on the original lattice points and related
to Φij by [14]

φij(τ) =
1
2
[
θi(τ) + θj(τ)

]
. (9)

A global shift in the the phases θi implies a global shift
in Φij , i.e., the field θi is gapless in the long-wavelength
limit. Moreover, all field distributions {Φij} which can be
represented by a continuous envelope function can be well
represented by θi showing that the field θi is a suitable
choice in deriving the effective action. The fluctuating or-
der parameter is thus assumed to be

∆i,i+x̂(τ) = ∆0 · ei[θi(τ)+θi+x̂(τ)]/2,

∆i,i+ŷ(τ) = −∆0 · ei[θi(τ)+θi+ŷ(τ)]/2. (10)

It is well-known that phase fluctuations induce charge
and current fluctuations and thus electric and magnetic
fields [33]. Therefore the resulting electromagnetic field
has to be considered in a general formalism by including
scalar and vector potentials in the action, especially, to
guarantee gauge invariance. In the case of lattice models,
a minimum coupling scheme to describe the interactions
involving the electromagnetic field is given by the Peierls
substitution [34], which corresponds to

−µ · Ψ̄iσ(τ)Ψiσ(τ) −→
[
− µ − e · A0(ri, τ)

]

× Ψ̄iσ(τ)Ψiσ(τ), (11)

tij · Ψ̄iσ(τ)Ψjσ(τ) −→ tij · exp
(
− ie

∫ ri

rj

A(r, τ) · dl

)

× Ψ̄iσ(τ)Ψjσ(τ), (12)

where A0 and A ≡ (Ax, Ay, Az) are the scalar and vector
potentials, respectively, and (−e) is the electron charge. In
the case of slowly varying phase fluctuations the induced
electromagnetic potentials also vary slowly in time and
space so that we can write [35]

∫ ri

rj

A(r, τ) · dl ≈ (ri − rj) · 1
2

{
A(rj , τ) + A(ri, τ)

}
.

3 Effective action for small phase fluctuations

In this section we first give explicit expressions for the
change of the action away from the d-wave saddle point
due to slow spatial and temporal phase fluctuations and
the corresponding induced electromagnetic field. The ef-
fective action Seff is defined by

Z[A, θ]
Z(0)

= exp
(
− Seff[A, θ]

)
, (13)

using the abbreviation A = (A0, A). Z[A, θ] is the to-
tal partition function, containing also the effects due
to fluctuations in A and θ. Z(0) denotes the d-wave
saddle point partition function in the presence of the
Coulomb and Hubbard terms, and S(0) its corresponding
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action

Z(0) =
∫

DΨ̄DΨexp
(
− S(0)

)
, (14)

S(0) =
∫ β

0

dτ

[
∑

i,σ

Ψ̄iσ(τ)
{
∂τ − µ

}
Ψiσ(τ)

−
∑

i,j,σ

tijΨ̄iσ(τ)Ψjσ(τ)−
∑

〈i,j〉

{
1
4
∆0γij

[
B̄∗

ij(τ)+B̄ij(τ)
]

− 1
8J

(
∆0

)2
}]

+ Sint. (15)

By expanding perturbatively the action (6) with respect
to the phase exponential factors and electromagnetic po-
tentials appearing in equations (10) and (11), (12), re-
spectively, one obtains the partition function and action
related to fluctuations in the phase and the vector poten-
tial. We go over to imaginary frequencies and momentum
space. The fermionic Matsubara frequencies are labelled
by iνm, and the bosonic ones by iωn. It is convenient to
define the four-dimensional wave vectors k = (kα)0≤α≤3 =
(iνm, k) and q = (qα)0≤α≤3 = (iωn, q). The Fourier trans-
formed field variables are defined by

Ψ̄σ(iνm, k) ≡ Ψ̄σ(k)

=
1√
βNs

∑

i

∫ β

0

dτe−iνmτ+ik·ri Ψ̄iσ(τ). (16)

It is also convenient to introduce Nambu spinor field op-
erators [36,37] by

Φ̄(k) =
(
Ψ̄↑(k) Ψ↓(−k)

)
, Φ(k) =

(
Ψ↑(k)

Ψ̄↓(−k)

)
. (17)

In this section we consider only terms up to the second
order in the fluctuations θ. This means that we allow only
small phase fluctuations around a homogenous state char-
acterized by θ = 0. The partition function and the ac-
tion, expanded up to second order in A and θ, becomes
then

Z[A, θ] =
∫

DΨ̄DΨ exp
(
− S[A, θ]

)
, (18)

S[A, θ] = S(0) + S′
A + S′

θ, (19)

S′
A =

1√
βNs

∑

k,q

3∑

α=0

vα(k)Aα(q)Φ̃(nα, k, q)

+
1

βNs

∑

k,q,q′

3∑

α,α′=1

m−1
αα′(k)Aα(q)Aα′(q′)

× Φ̃(3, k, q + q′), (20)

S′
θ =

1√
βNs

∑

k,q

w(k, q)θ(q)Φ̃(2, k, q)

+
1

βNs

∑

k,q,q′
z(k, q, q′)θ(q)θ(q′)

× Φ̃(1, k, q + q′), (21)

with

v0(k) = −e, vα(k) = (−e)
∂εk

∂kα
for α = 1, 2, 3, (22)

m−1
αα′(k) =

e2

2
∂2εk

∂kα∂kα′
for α, α′ = 1, 2, 3, (23)

εk = −
∑

ri−rj

tijeik·(ri−rj), (24)

w(k, q) =
1
2
(∆k + ∆k+q), (25)

z(k, q, q′) =
1
8
(∆k + 2∆k+q + ∆k+q+q′), (26)

∆k =
∆0

2
[
cos(kx) − cos(ky)

]
, (27)

Φ̃(α, k, q) = Φ̄(k + q)σαΦ(k). (28)

εk is the hopping energy and ∆k the d-wave superconduct-
ing order parameter. σα denotes for α = 1, 2, 3 the Pauli
matrices along the x, y, and z directions, respectively, and
for α = 0 the 2 × 2 identity matrix. nα is equal to 3 for
α = 0 and zero otherwise. The summations in k-space
always extend over the first Brillouin zone.

The next step consists in performing the functional in-
tegration over the Ψ̄ , Ψ fermionic fields appearing in equa-
tion (18). It is achieved by noticing that Z[A, θ]/Z(0) can
be seen as a generating functional, θ, A representing exter-
nal sources which couple to one-particle density operators
Φ̃(α, k, q). Abbreviating the set of variables {α1, k1, q1},
{α2, k2, q2} symbolically by 1, 2, etc., we can write

S′
A + S′

θ =
∫

d1E(1)Φ̃(1), (29)

where an explicit expression for E(1) can easily be read off
from equations (20) and (21). The integration over Fermi
fields yields then for Seff, defined in equation (13) [26],

Seff[A, θ] =
∫

d1 Gc(1)E(1)

− 1
2

∫
d1d2 Gc(1; 2)E(1)E(2) + ..., (30)

Gc are connected Green’s functions. They are related to
the usual Green’s functions G, defined by

G(1; ...; n) =
∫

DΦ̄DΦ Φ̃(1)...Φ̃(n)e−S0/Z0, (31)

via the cumulant expansion of Gc in terms of G obtained
from the identity [26]

W [A, θ] = ln
(Z[A, θ]

Z(0)

)
, (32)

where W [A, θ] is the generating functional for connected
Green’s functions. Explicitly, one obtains Gc(1) = G(1),
Gc(1; 2) = G(1; 2) − G(1)G(2), etc. We point out that in
the general case, these connected Green’s functions have
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to be calculated in the presence of the V and U interaction
terms.

Expressing E in terms of A and θ it is clear that no lin-
ear terms in A or θ can appear in Seff for a non-vanishing
momentum q. The quadratic terms in A and θ of Seff be-
come

Seff[A, θ] =
1
2

∑

q,α,α′
Aα(q)KAA

αα′ (q)Aα′ (−q)

+
1
2

∑

q

θ(q)Kθθ(q)θ(−q)

+
∑

q,α

Aα(q)KAθ
α (q)θ(−q), (33)

with

KAA
αα′(q) = − 1

βNs

∑

k,k′
vα(k)vα′ (k′)

× G(nα, k, q; nα′ , k′,−q)

+
2

βNs

∑

k

m−1
αα′(k)(1 − δα0)(1 − δα′0)

× G(3, k, 0), (34)

Kθθ(q) = − 1
βNs

∑

k,k′
w(k, q)w(k′,−q)

× G(2, k, q; 2, k′,−q)

+
2

βNs

∑

k

z(k, q,−q)G(1, k, 0), (35)

KAθ
α (q) = − 1

βNs

∑

k,k′
vα(k)w(k′,−q)

× G(nα, k, q; 2, k′,−q), (36)

General considerations show that the Taylor expansion of
Kθθ in powers of q has no constant or linear terms, that
of KAθ no constant terms. We therefore write

Kθθ(q) = −
3∑

α,α′=0

qαKθθ
αα′(q)qα′ , (37)

KAθ
α (q) = −

3∑

α′=0

KAθ
αα′(q)qα′ , (38)

where the functions Kθθ
αα′(q) and KAθ

αα′(q) approach in gen-
eral finite values for q → 0. Writing

θα(q) ≡ qαθ(q), (39)

for α = 0, ..., 3, we obtain for Seff

Seff[A, θ] =
1
2

∑

q,α,α′

(
Aα(q)KAA

αα′ (q)Aα′ (−q)

+ θα(q)Kθθ
αα′ (q)θα′(−q)

+ 2Aα(q)KAθ
αα′ (q)θα′(−q)

)
. (40)

Equation (40) shows that Seff actually depends not on the
phase θ itself but only on its gradients. The three functions
KAA, Kθθ, and KAθ are not independent from each other.
To see this we apply a gauge transformation to Seff [19]

Aα(q) → Aα(q) + iχα(q),
θα(q) → θα(q) − 2eχα(q), (41)

where both equations hold for α = 0, 1, 2, 3 and we have
defined χα(q) ≡ qαχ(q). For this gauge transformation it
is sufficient to consider both θ and χ to be very small.
As a result we only deal with small phase deviations from
θ = 0 and a possible non-uniqueness of wave functions
cannot play any role. Invariance of Seff against this trans-
formation yields the identities

KAA
αα′(q) = −4e2Kθθ

αα′(q) = −2ieKAθ
αα′(q). (42)

An explicit calculation for the case of non-interacting elec-
trons is presented in the appendix and provide direct
checks of equation (42). Using the above relations one fi-
nally finds for Seff

Seff[A, θ] =
1
2

∑

q,α,α′

[
Aα(q) +

i
2e

θα(q)
]
KAA

αα′ (q)

×
[
Aα′(−q) +

i
2e

θα′(−q)
]
. (43)

The matrix KAA
αα′ connects the charge and current induced

by an applied external potential A. Our microscopic ex-
pression, equation (34), just represents a generalization of
the usual expression [38] to the case with interactions be-
tween electrons. Some contributions to the kernel K, for
instance, the second term on the right-hand side of equa-
tion (34) develop non-analytic behavior at small q’s such
as square root singularities due to the linear fermionic
dispersion near the nodal direction [39]. It also has been
pointed out that this dispersion may lead to instabilities
and new phases such as spin density or Cooper pair charge
density wave states [18,40]. KAA

00 (q) is the density-density
correlation function. For a charged system the Coulomb
interaction in equation (2) is important. The diagrams to
KAA

00 (q) can be classified to be reducible or irreducible de-
pending whether or not the diagram decomposes into two
unconnected parts by cutting on Coulomb line [45]. De-
noting by K̃ its irreducible part the exact density-density
Green’s function KAA

00 (q) can be obtained by summing a
geometrical series, i.e., by,

KAA
00 (q) =

K̃AA
00 (q)

1 + V (q)K̃AA
00 (q)

. (44)

Taking into account the layered structure of high-Tc

cuprates, the Coulomb potential V (q) is given by [46]

V (q) =
2πe2d

εbq‖

[ sinh(q‖d)
cosh(q‖d) − cos(qzd)

]
, (45)

with q‖ =
√

q2
x + q2

y. d is the distance between layers and

εb a background dielectric constant. KAA
00 approaches at
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Fig. 1. Ring diagram of order � in the order parameter ∆̃k,k+q. The solid lines denote the unperturbed Green’s function G0.

small wave vectors the universal function 1/V (q). Sym-
metry requires KAA

0α′ = 0 for α′ = 1, 2, 3. Furthermore,
KAA

αα′ is for α, α′ = 1, 2, 3 already irreducible in the above
sense so that no analogue to equation (44) exists in this
case.

Finally we need an equation to determine ∆0. Using
the Nambu formulation the terms in the small square
bracket in equation (6) can be written after a Fourier
transformation as

− 1
4

∫ β

0

dτ
∑

〈ij〉
[∆ijB̄

∗
ij(τ) + ∆∗

ij(τ)B̄ij(τ)] =

∑

k,q

Φ̄k∆̃k,k+qΦk+q. (46)

∆̃k,k+q is, except for a factor −1/4, the Fourier trans-
form of ∆ij(τ)σ+ + ∆∗

ij(τ)σ− with σ± = (σ1 ± σ2)/2.
In determining ∆0 we may put all phases to zero so that
∆ij(τ)σ+ + ∆∗

ij(τ)σ− reduces to ∆0γijσ1. Considering
the deviation δ∆0 from the saddle point value ∆0 the cor-
responding change in the action on the right-hand side of
equation (46) yields a change linear in δ∆0 in Seff after
integrating out the Fermi fields as previously. Requiring
that the total linear term in δ∆0 vanishes yields the de-
sired equation

∆0

J
=

1
βNs

∑

k

(cos kx − cos ky) G(1, k, 0). (47)

4 Gradient expansion of Seff

Seff has been derived in Section 3 under the assumption
that the phase θ is small. An expansion of Seff in terms of
gradients of the order parameter seems to be more satis-
fying because θ is then no longer restricted to small val-
ues. As shown in reference [41] for the case of a charge-
density-wave state, resummations allow to transform the
expansion of Seff in powers of the order parameter into an
expansion in powers of gradients of the order parameter.

In the following we adapt this method to our action and
consider first the non-interacting case Sint = 0. The in-
tegration over fermions can then easily be performed and
one obtains, dropping the constant ∼∆2

0,

Seff[0, θ] = −Tr
{
ln(−G−1

0 + ∆̃)
}

(48)

= −Tr
{
ln

( − G−1
0

)}
+

∞∑

�=1

1
�
Tr

{
(G0∆̃)�

}
.

G0 is the unperturbed Green’s function due to the two first
terms in equation (15), its expression is given in equa-
tion (A.1). Tr denotes the trace over k and the Nambu
index. The �th order term X� in the sum over � can be
written in frequency-momentum space as

X� =
1
�

∑

q1,...,q�

∫
dreir·(q1+...+q�)Y(q1, q2, ..., q�), (49)

Y (q1, q2, ..., q�) =
∑

k

Tr′
{
∆̃k,k+q1G0(k + q1) ...

× ∆̃k+...q�−1,k+...+q�

× G0(k + ... + q�)
}

. (50)

r stands for the vector (τ, ri), and
∫

dr for
1/(βNs)

∑
i

∫ β

0
dτ . Tr′ denotes a trace over the Nambu

index. X� can be visualized by a ring diagram (see Fig. 1)
where the electronic Green’s function G0 (solid line) is
scattered at the external potentials ∆̃ (wavy lines).

For the following it is convenient to write ∆̃(k, q1) in-
stead of ∆̃k,k+q1 . The first momentum k refers then to
the relative and the second one q1 to the center-of-mass
motion of the Cooper pair. k may assume arbitrary values
whereas q1, q2, ..., are considered to be small.

In the non-interacting case the calculations for Seff in
Section 3 correspond to the evaluation of ring diagrams
of the type shown in Figure 1. To obtain Seff in sec-
ond order in θ we had to take into account one and also
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Fig. 2. Ring diagram of order � in the order parameter
∆̃k,k+q with momenta corresponding to small phase fluctua-
tions around an equilibrium state with long-range order.

two non-equilibrium external lines due to phase fluctua-
tions yielding the second and first terms in equation (35),
respectively. The corresponding ring diagram of order �
is obtained by evaluating the Green’s functions in equa-
tions (34)–(36) for non-interacting electrons and expand-
ing them to order �−2 or �−1, respectively, in ∆̃(k, 0). Let
us first consider the first term in more detail. Its �th order
contribution can be illustrated by the diagram shown in
Figure 2. δ∆̃(k, qi) and δ∆̃(k + qi, qj) are the two non-
equilibrium lines with qi = −qj from momentum conser-
vation. Between these lines the electrons are � − 2 times
scattered at the equilibrium order parameter with zero
momentum. In this case the phase deviations from their
equilibrium values must be considered as small so that the
expansion in powers of θ is appropriate. If the phase does
not exhibit true long-range order but still varies slowly
in space and time the ring diagrams of Figure 1 have to
be evaluated in a different way. In this case the momenta
qi in the external lines have to be kept but one may ex-
pand the electron propagators in powers of qi. As shown
in references [41,42] such an expansion generates a gradi-
ent expansion for Seff. In particular, it does not assume
that θ is small but only that the gradients of θ are small.
Figure 3 shows the distribution of momenta which yield
the leading term in this expansion. Scattering at the sites
i and j is accompanied by a change in energy and mo-
mentum qi, whereas no change in energy or momentum
occurs at all the other sites. Keeping higher terms in the
expansion of the electron propagator in terms of qi would
yield contributions to Seff which are at least of third order
in phase gradients.

Evaluating the diagram of Figure 3 the sums over
q1, ..., qi−1, qi+1, ..., qj−1, qj+1, ...q� can be immediately be
carried out yielding products of ∆̃(k, r), the Fourier trans-
form of ∆̃(k, k1) with respect to k1. It is convenient to
introduce a Green’s function G̃(k, r) by

G̃−1(k, r) = G−1
0 (k) − ∆̃(k, r). (51)

Fig. 3. Ring diagram of order � in the order parameter ∆̃k,k+q

with momenta corresponding to the leading non-local contri-
bution in the gradient expansion.

After a small rearrangement of terms one obtains for the
diagram the expression

X
(2)
� =

1
2�

∑

i
=j

∑

k,qi

∫
dr Tr′

{
G̃(�−j+i−1)(k, r)∆̃(k, qi)

× G̃(j−i−1)(k + qi, r)

× ∆̃(k,−qi)
}
, (52)

where G̃(�)(k, r) is the contribution of order � to G̃. The
sums over i, j and finally also over � can also be performed
yielding the following contribution to Seff

S(2)
eff =

1
2

∑

k,q

∫
drTr′

{
G̃(k, r)∆̃(k, q)

× G̃(k + q, r)∆̃(k,−q)
}
. (53)

Ring diagrams with only one non-equilibrium line δ∆̃(k, q)
can be evaluated in a similar manner. Though these dia-
grams only involve the q = 0 Fourier component of ∆̃ due
to energy and momentum conservation they yield prod-
ucts of phase fluctuations when passing from order pa-
rameter to phase fluctuations. Evaluating these ring dia-
grams in form of a gradient expansion yields the following
contribution to Seff

S(1)
eff =

∑

k

∫
dr Tr′

{
G̃(k, r)∆̃(k, 0)

}
. (54)

Equations (53) and (54) represent time and space aver-
ages of the corresponding homogenous action where the
Green’s functions contain the local instead of the global
gap. This gives a simple recipe to generalize an expres-
sion for Seff derived under the assumption of small phase
fluctuations to one which is valid also for large phase fluc-
tuations in the leading order of a gradient expansion: one
writes Seff as a density in space and time and then uses
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Fig. 4. (Color online) Small and large fluctuations in the θ-τ
plane.

at a given point r in space and time the homogenous ex-
pression for Seff with the constant gap value ∆̃(k, r) in the
Green’s functions. In the phase-only approximation order
parameter fluctuations are solely due to fluctuations in
the phase. Because the Green’s functions in equation (53)
refer for a given r to a constant phase this phase can
be gauged away by a global gauge transformation with-
out any additional contribution to the vector potential A.
The right-hand side of equation (53) is clearly invariant
against a global gauge transformation. This is true even
separately for the product of the order parameters and the
susceptibility because the latter involves the same num-
ber of creation and annihilation operators so that global
phases cancel. In the phase-only approximation we thus
may put the phase in equation (53) to zero. This means
that the ring diagram of Figure 4 reduces to a diagram of
second-order in ∆̃ where the Green’s functions (solid lines)
are to be calculated with the equilibrium order parameter
equations (7) and (8). This result proves that within the
phase-only approximation the effective action derived for
small fluctuations in Section 3 is in leading order in field
gradients identical with that of the gradient expansion.
In the general case where also the amplitude ∆0 varies
in time and space equation (53) clearly differs from the
corresponding lowest-order expression in Section 3.

It is evident that the above results also hold for inter-
acting electrons. For a given skeleton diagram in interac-
tion and electron lines there is again a one-to-one corre-
spondence between diagrams in �th order in ∆̃ for ordered
and disordered ground states. For ordered ground states
this diagram is obtained by expanding electron lines in
∆̃(k, 0) so that the total order is � − 2. In the disordered
case the same diagram is obtained by expanding Seff in
equation (30) up to the order �, and associating in all pos-
sible ways two vertices with and the remaining �−2 with-
out energy and momentum changes. Writing the energy
and momentum conservation as a Fourier integral over r,
the momentum integration at the � − 2 vertices without
energy and momentum changes can be carried out yield-
ing products of ∆̃(k, r). As a result a strict one-to-one
correspondence between diagrams of the ordered and dis-

ordered cases is established from which the above recipe
follows.

5 Discussion and conclusions

Equation (43) together with equations (34)–(38) represent
a microscopic expression for the effective action of phase
fluctuations in a d-wave superconductor with interacting
electrons. In Section 3 this expression was derived under
the assumption that θ is small. The dotted line in Fig-
ure 4 illustrates this case for the τ -dependence of θ. Within
the interval [0, β] θ performs small oscillations around the
equilibrium value θ = 0. Similar pictures can be drawn for
paths in r = (τ, r) space. The gradient expansion in Sec-
tion 4 allows to consider more general paths of the form
θ(r) = θ0(r) + δθ(r). θ0(r) is assumed to be slowly vary-
ing with r whereas δθ(r) must be small, as illustrated by
the solid and dashed lines, respectively, in Figure 4. Since
in the phase-only approximation the gradient expansion
leads to the same expression for Seff as the perturbation
theory equation (43) is actually valid for all paths shown
in Figure 4. To determine Seff for the solid curve it is suf-
ficient to take in equation (43) the long-wavelength, low-
frequency limit in KAA

αα′(q). The important slowly vary-
ing extremal paths satisfy then a second-order differential
equation which may have besides of trivial constant also
vortex solutions illustrated by the solid line in Figure 4.

Seff reduces in the static limit to the Ginzburg-Landau
form for the phase-dependent part of the free energy of a
superconductor. For non-interacting electrons it also co-
incides with previous expressions derived using singular
gauge transformations. Note that our derivation of Seff

avoided any singular gauge transformation. Instead we
expanded both the diagonal and the off-diagonal parts
of the microscopic action in terms of gradients in the
phase and related the two parts using non-singular gauge
transformations. The fact that our final Seff agrees for
non-interacting electrons with previously derived effective
actions implies that the change of boundary conditions
associated with singular gauge transformations does not
enter Seff as long as the field gradients are small and only
second-order terms of them are retained. Heuristically, the
above expression for Seff can be obtained in the following
simple way: Discard order parameter fluctuations in the
original microscopic Lagrangian but keep the potential A.
Integrate then over the Fermi fields and make the result-
ing Seff gauge-invariant by applying the gauge transfor-
mation, equation (41), and interpret the field −2eχ as the
phase field of the order parameter.

We are grateful to Dirk Manske for a careful reading of the
manuscript.

Appendix A: Interrelation between different
kernels K in Seff for non-interacting electrons

In this appendix we check the relation between the kernels
KAA and Kθθ given by equation (42) for an isolated layer
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and non-interacting electrons. The free Green’s function
matrix is then given by

G0(k) =
−1

(νm)2 + (ξk)2 + (∆k)2

×
[

iνm + ξk −∆k

−∆k iνm − ξk

]
, (A.1)

with the following energies

∆k =
∆0

2
[
cos(kx) − cos(ky)

]
, ξk = εk − µ, (A.2)

εk = −2t
[
cos(kx) + cos(ky)

] − 4t
′[

cos(kx). cos(ky)
]
,

where εk includes nearest and next-nearest neighbor hop-
ping contributions. Equation (47) yields the BCS gap
equation [43,38]

1
J

=
1

Ns

∑

k

[
cos(kx) − cos(ky)

]2

2Ek
tanh

(
βEk

2

)
, (A.3)

where Ek is the quasiparticle energy, Ek =√
(ξk)2 + (∆k)2, and the summation in k-space is

extended over the first (square) Brillouin zone. Per-
forming the summation over the fermionic Matsubara
frequencies we find for the kernel Kθθ of equation (35),

Kθθ(q) =
1

4Ns

∑

k

(
{
∆k + ∆k−q

}2

×
[{

1 − nFD(Ek−q) − nFD(Ek)
}

2

×
{

1 +
ξkξk−q + ∆k∆k−q

EkEk−q

}

×
{

1
iωn − Ek − Ek−q

− 1
iωn + Ek + Ek−q

}

+

{
nFD(Ek−q) − nFD(Ek)

}

2

×
{

1 − ξkξk−q + ∆k∆k−q

EkEk−q

}

×
{

1
iωn − Ek + Ek−q

− 1
iωn + Ek − Ek−q

}]

+
2∆k

{
∆k + ∆k−q

}

Ek

{
1 − 2nFD(Ek)

}
)

, (A.4)

with nFD being the Fermi-Dirac distribution function.
To perform a first explicit check of equation (42), we

consider the frequency dependence of the kernels Kθθ,
KAA and KAθ. With equations (37) and (A.4) we have

Kθθ
00(iωn,0) = − 1

Ns

∑

k

{
1 − 2nFD(Ek)

}

× (∆k)2

Ek

{
(iωn)2 − 4(Ek)2

} . (A.5)

Using equation (34) we get for the electromagnetic field
kernel

KAA
00 (iωn,0) =

e2

βNs

∑

k

Tr′
[
σ3G0(k)σ3G0(k)

]
, (A.6)

which gives after summation over the fermionic frequen-
cies

KAA
00 (iωn,0) =

4e2

Ns

∑

k

{
1 − 2nFD(Ek)

}

× (∆k)2

Ek

{
(iωn)2 − 4(Ek)2

} . (A.7)

Similarly, equation (36) yields,

KAθ
0 (q) =

e

2βNs

∑

k

(∆k + ∆k+q)

× Tr′
[
σ3G0(k)σ2G0(k + q)

]
. (A.8)

Performing the summation over the fermionic frequencies
and putting q = 0 we find,

KAθ
00 (iωn,0) =

2i
Ns

∑

k

{
1 − 2nFD(Ek)

}

× (∆k)2

Ek

{
(iωn)2 − 4(Ek)2

} . (A.9)

By comparing equations (A.5), (A.7) and (A.9) one can
see immediately

KAA
00 (iωn,0) = −4e2Kθθ

00(iωn,0)

= −2ieKAθ
00 (iωn,0), (A.10)

in agreement with equation (42), for any frequency iωn.
The low-frequency limit of the effective action Seff[0, θ]

can be investigated by expanding quadratically its kernel.
We start by considering the zero-temperature case. The
low-frequency expansion up to the second-order in iωn of
Kθθ, equation (A.4), is straightforward, we have

Kθθ(iωn → 0, q = 0) = − 1
4Ns

∑

k

(∆k)2

(Ek)3
(iωn)2. (A.11)

A similar procedure can be repeated in the finite temper-
ature case. The low-frequency limit of Kθθ is given by

Kθθ(iωn → 0, q = 0) =
1
4
χ0(iωn → 0, q = 0) · (iωn)2, (A.12)

with χ0 the mean field density-density correlation function

χ0(iωn → 0, q = 0) =

− 1
Ns

∑

k

{
1 − 2nFD(Ek)

} (∆k)2

(Ek)3
. (A.13)
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Our expressions (A.11) and (A.13) can be compared with
equations (16) and (19) of reference [14], taken in the
low-frequency limit which we considered. We obtain the
same results. Therefore we can conclude that KAA and
Kθθ are equal, up to a constant factor proportional to the
electronic charge. This provides an additional non-trivial
check of equation (42).
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23. O. Vafek, Z. Tešanović, Phys. Rev. Lett. 91, 237001 (2003)
24. P.W. Anderson, Science 235, 1196 (1987)
25. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)
26. J.W. Negele, H. Orland, Quantum Many-Particle Systems

(Advanced Book Classics, Perseus Books, Reading,
Massachusetts, 1998)

27. A.M. Tsvelik, Quantum field theory in condensed matter
physics (Cambridge University Press, Cambridge, 1995)

28. N. Nagaosa, Quantum Field Theory in Condensed Matter
Physics (Springer-Verlag, Berlin, 1999)

29. N. Nagaosa, Quantum Field Theory in Strongly Correlated
Electronic Systems (Springer-Verlag, Berlin, 1999)

30. R.L. Stratonovitch, Sov. Phys. Dokl. 2, 416 (1958)
31. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)
32. A detailed derivation of the superconductivity theory in

the framework of path integral can be found in Chapter 5
of reference [28]

33. P.G. De Gennes, Superconductivity of Metals and Alloys,
Chap. 5 (W.A. Benjamin, New York, 1966)

34. R. Peierls, Z. Phys. 80, 763 (1933)
35. M. Graf, P. Vogl, Phys. Rev. B 51, 4940 (1995)
36. Y. Nambu, Phys. Rev. 117, 648 (1960)
37. G. Rickayzen, Green’s Functions and Condensed Matter

(Academic Press, London, 1980)
38. J.R. Schrieffer, Theory of Superconductivity, revised print-

ing (Advanced Book Classics, Perseus Books, Reading,
Massachusetts, 1999)

39. D. Schmeltzer, J. Phys.: Cond. Matter 13, 1699 (2001)
40. I.F. Herbut, Phys. Rev. Lett. 88, 47006 (2002)
41. P. Benedetti, R. Zeyher, Phys. Rev. B 58, 14320 (1998)
42. A. Muramatsu, R. Zeyher, Nucl. Phys. B 346, 387 (1990)
43. L.N. Cooper, Phys. Rev. 104, 1189 (1956); J. Bardeen,

L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)
44. T.V. Ramakrishnan, Phys. Scr. T 27, 24 (1989)
45. The diagrammatic rules in the framework of Nambu for-

malism are developed in Chapter 8 of reference [37].
46. A.L. Fetter, Ann. Phys. (N.Y.) 88, 1 (1974)


